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Abstract
Experimental investigation of the solid state deformation properties of silicates at high temperatures has 

revealed that the deformation rate depends on the stress to a power of about 3 to 5 as well as strongly on 
the temperature. This highly nonlinear behavior leads to the potential of thermal runaway of the mantle’s 
cold upper boundary layer as it peels away from the surface and sinks through the hot mantle. The 
additional fact that the mineral phase changes that occur at 660 km depth act as a barrier to convective 
flow and lead to a tendency for large episodic avalanche events compounds the potential for catastrophic 
dynamics. Two-dimensional finite element calculations are presented that attempt to model these strongly 
nonlinear phenomena. It is proposed that such a runaway episode was responsible for the Flood described 
in Genesis and resulted in massive global tectonic change at the earth’s surface.
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Introduction
The only event in Scripture since creation capable 

of the mass destruction of living organisms evident in 
the fossil record is the Genesis Flood. A critical issue 
in any model for earth history that accepts the Bible 
as accurate and true is what was the mechanism for 
this catastrophe that so transformed the face of the 
earth in such a brief span of time. The correct answer 
is crucial to understanding the Flood itself and for 
interpreting the geological record in a coherent and 
valid manner. It is therefore a key element in any 
comprehensive model of origins from a creationist 
perspective. Ideas proposed as candidate mechanisms 
over the past century include collapse of a water vapor 
canopy (Dillow, 1981), near collision of a large comet 
with the earth (Patton, 1966), rapid earth expansion 
(Morton, 1983), and violent rupture of the crust by 
pressurized subterranean water (Brown, 1989). There 
are serious difficulties with each of these ideas.

Another possibility is that of runaway subduction 
of the pre-Flood ocean lithosphere (Baumgardner, 
1987, 1991). A compelling logical argument in favor of 
this mechanism is the fact that there is presently no 
ocean floor on the earth that predates the deposition 
of the fossiliferous strata. In other words all the 
basalt that comprises the upper five kilometers or 
so of today’s igneous ocean crust has cooled from 

the molten state since sometime after the Flood 
cataclysm began. The age of today’s seafloor relative 
to the fossil record is based on two decades of deep 
sea drilling and cataloging of fossils in the sediments 
overlying the basalt basement by the Deep Sea 
Drilling Program as well as radiometric dating of the 
basalts themselves (Proceedings of the Ocean Drilling 
Program). Presumably, there were oceans and ocean 
floor before the Flood. If this pre-Flood seafloor did 
not subduct into the mantle, what was its fate? Where 
are these rocks today? On the other hand, if the pre-
Flood seafloor did subduct, it must have done so very 
rapidly—within the year of the Flood. In regard to 
the fate of the pre-Flood seafloor, there is strong 
observational support in global seismic tomography 
models for cold, dense material near the base of the 
lower mantle in a belt surrounding the present Pacific 
Ocean (Richards & Engebretson, 1992). Such a spatial 
pattern is consistent with subduction of large areas 
of seafloor at the edges of a continent configuration 
commonly known as Pangea.

There are good physical reasons for believing 
that subduction can occur in a catastrophic fashion 
because of the potential for thermal runaway in 
silicate rock. This mechanism was first proposed 
by Gruntfest in 1963 and was considered by several 
in the geophysics community in the early 1970s 
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(Anderson & Perkins, 1974). Previous International 
Conference on Creationism papers (Baumgardner, 
1987, 1991) have discussed the process by which a 
large cold, relatively more dense, volume of rock in 
the mantle generates deformational heating in an 
envelope surrounding it, which in turn reduces the 
viscosity in the envelope because of the sensitivity 
of the viscosity to temperature. This decrease in 
viscosity in turn allows the deformation rate in the 
envelope to increase, which leads to more intense 
deformational heating, and finally, because of the 
positive feedback, results in a sinking rate orders of 
magnitude higher than would occur otherwise. It was 
pointed out that thermal diffusion, or conduction of 
heat out of the zone of high deformation, competes 
with this tendency toward thermal runaway. It 
was argued there is a threshold beyond which the 
deformational heating is strong enough to overwhelm 
the thermal diffusion, and some effort was made to 
characterize this threshold.

The important new aspect addressed in this paper 
is the dependence of the viscosity on the deformation 
rate itself. Although this deformation rate dependence 
of viscosity has been observed experimentally in the 
laboratory for several decades, the difficulty of treating 
it in numerical models has deterred most investigators 
from exploring many of its implications. Results 
reported in the previous International Conference 
on Creationism papers did not include this highly 
nonlinear phenomenon. Significant improvements in 
the numerical techniques that permit large variations 
in viscosity over small distances in the computational 
domain, however, now make such calculations 
practical. The result of including this behavior in the 
analysis of the thermal runaway mechanism is to 
discover a much stronger tendency for instability in 
the earth’s mantle. Moreover, deformation rates orders 
of magnitude higher than before throughout large 
volumes of the mantle now can be credibly accounted 
for in terms of this more realistic deformation law. This 
piece of physics therefore represents a major advance 
in understanding how a global tectonic catastrophe 
could transform the face of the earth on a timescale 
of a few weeks in the manner that Genesis describes 
Noah’s Flood.

Recent papers by several different investigators 
(Machetel & Weber, 1991; Peltier & Solheim, 1992; 
Tackley, Stevenson, Glatzmaier, & Schubert, 1993; 
Weinstein, 1993) have also shown that the mineral 
phase changes which occur as the pressure in the  
mantle increases with depth also leads to 
episodic dynamics. The spinel to perovskite plus 
magnesiowustite transition at about 660 km depth 
is endothermic and acts as a barrier to flow at this 
interface between the upper and lower mantle. It 
therefore tends to trap cold material from the mantle’s 

upper boundary layer as it peels away from the surface 
and sinks. Numerical studies show that, with this 
phase transition present, flow in the mantle becomes 
very episodic in character and punctuated with brief 
avalanche events that dump the cold material that has 
accumulated in the upper mantle into the lower mantle. 
The episodic behavior occurs without the inclusion 
of the physics that leads to thermal runaway. This 
paper argues that when temperature and strain rate 
dependence of the rheology is included, the timescale 
for these catastrophic episodes is further reduced by 
orders of magnitude. In this light, the Flood of the 
Bible with its accompanying tectonic expressions is 
a phenomenon that is seems to be leaping out of the 
recent numerical simulations.

Mathematical Formulation
In this numerical model the silicate mantle is 

treated as an infinite Prandtl number, anelastic fluid 
within a domain with isothermal, undeformable, 
traction-free boundaries. Under these approximations 
the following equations describe the local fluid 
behavior:

(1)

(2)

(3)

where      (4)

and (5)

Here p denotes pressure, ρ density, g gravitational 
acceleration, τ deviatoric stress, u fluid velocity, T 
absolute temperature, γ the Grueneisen parameter, 
k thermal conductivity, H volume heat production 
rate, cv specific heat at constant volume, µ dynamic 
shear viscosity, K the isothermal bulk modulus, 
and α the volume coefficient of thermal expansion. 
The quantities pr, ρr, and Tr are, respectively, the 
pressure, density, and temperature of the reference 
state. I is the identity tensor. The superscript T in (4) 
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the conservation of momentum in the infinite Prandtl 
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where B = 0.5A-1/n and q = 1 − 1/n. A value for n of 3.5, 
appropriate for the mineral olivine (Kirby, Kirby & 
Kronenberg), yields a q of 0.714. This means that the 
effective viscosity m decreases strongly as the strain 
rate increases. A tenfold increase in the strain rate, 
for example, yields an effective viscosity, at fixed 
temperature and pressure, a factor of 5.2 smaller! For 
a 1010 increase in strain rate, the effective viscosity 
decreases by more than a factor of 107. The effect is 
even more pronounced for larger values of n.

Figure 1 is a deformation mechanism map for 
olivine that shows the region in stress-temperature 
space where power-law creep is observed. Note 
that there exists a boundary between the power-
law creep regime and that of diffusional creep. 
Because the strain rates for diffusional creep are so 
small—too small in fact to be realized in laboratory 
experiments—this boundary is poorly constrained. 
Kirby (1983, p. 1461) states that the boundary may in 
actuality be substantially to the left of where he has 
drawn it. In any case at a given temperature there is 
a threshold value for the strain rate at which point 
one crosses from the diffusional regime—where the 
strain rate depends linearly on the stress—into the 
power-law regime. From Figure 1 this threshold is 
on the order of 10-17 to 10-14 s-1 for temperatures about 
60% of the melting temperature and stresses of about 
1 MPa.

Power-law creep is included in the numerical 
model simply by using the effective viscosity given 
by equation (7) in equation (4), where the scalar 
strain rate ε  is obtained by taking the square root 
of the second invariant of the rate of strain tensor  

the partial derivative of density with respect to time 
in the dynamics and thereby eliminates fast local 
density oscillations. It allows the computational time 
step to be dictated by the much slower deformational 
dynamics. Equation 3 expresses the conservation of 
energy in terms of absolute temperature. It includes 
effects of transport of heat by the flowing material, 
compressional heating and expansion cooling, thermal 
conduction, shear or deformational heating, and local 
volume (for example, radiogenic) heating.

The expression for the deviatoric stress given by 
Equation 4 assumes the dynamic shear viscosity 
m depends on temperature, pressure, and strain 
rate. The stress therefore is nonlinear with respect 
to velocity, and the rheological description is non-
Newtonian. This formulation is appropriate for the 
deformation regime in solids known as power-law 
creep to be discussed below. Equation 5 represents 
density variations as linearly proportional to 
pressure and temperature variations relative to a 
simple reference state of uniform density, pressure 
and temperature. Parameter values used are  
ρr = 3,400 kg m-3, pr = 0, Tr = 1600 K, g = 10 m/s, γ = 1, 
k = 4 W m-1K-1, H = 1.7 × 10-8 W m-3, cv = 1000 J kg-1K-1, 
and K = 1 × 1012 Pa.

 
Power-Law Creep

Laboratory experiments to characterize the high 
temperature solid state deformation properties of 
silicates have been carried out by many investigators 
over the last three decades (Kirby, 1983; Kirby 
& Kronenberg, 1987). These experiments have 
established that, for temperatures above about 60% 
of the melting temperature and strain rates down 
to the smallest achievable in the laboratory, silicate 
materials such as olivine deform according to a 
relationship of the form (Kirby)

(6)

where ε  is the strain rate, A a material constant, σ 
the differential stress, n a dimensionless constant 
on the order of 3 to 5, E* an activation energy, p is 
pressure, V* an activation volume, R the universal 
gas constant, and T absolute temperature. This 
relationship implies that at constant temperature and 
pressure the deformation rate increases dramatically 
more rapidly than the stress. Because the strain rate 
increases as the stress to some power greater than 
one, this type of deformation is known as power-law 
creep. This relationship may also be expressed in 
terms of an effective viscosity µ = 0.5σ/ ε  that depends 
on the strain rate ε  as (Kirby & Kronerberg, 1987; 
Stacey, 1977, p. 291) 
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Figure 1. Deformation map for olivine with a 1 mm grain 
size. Shear strain rates ε(in s-1) are contoured over shear 
stress τ normalized by shear modulus µ and absolute 
temperature T normalized by temperature of melting Tm 
(after Kirby, 1983). 

.
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d = ( u + uT)/2. To remove the singularity in 
equation (7) for zero strain rate and to model explicitly 
the transition between diffusion creep and power-
law creep, a minimum or threshold strain rate ε o is 
incorporated into the formulation. For regions in the 
domain where the strain rate ε  exceeds ε o, equation 
(7) applies. Otherwise the viscosity is strain rate 
independent. The parameter B is specified in terms 
of a reference viscosity µo at reference temperature 
Tr and zero strain rate as B = µo/{ ε o

-q exp[(E* + pV*)/
nRTr]}. To model the viscosity contrast between the 
upper mantle and lower mantle, the reference viscosity 
is allowed to vary with depth and increase in a linear 
fashion by a factor of 50 between 400 and 700 km. For 
purposes of numerical stability the threshold strain 
rate ε o is assumed to vary as 1/µo.

Phase Changes
The jumps in seismic quantities observed at depths 

of about 410 km and 660 km in the earth closely match 
phase transitions observed in laboratory experiments 
at similar temperatures and pressures for olivine to 
spinel and from spinel to perovskite silicate structures, 
respectively. These phase transitions that occur as the 
pressure increases and the crystal structures assume 
more compact configurations almost certainly play a 
critical role in the mantle’s dynamical behavior. In a 
calculation in which silicate material is transported 
through these depths and undergoes these phase 
changes, two effects need to be taken into account. 
One is the latent heat released or absorbed and the 
other is the deflection of the phase boundary upward 
or downward. The latent heat may be accounted for by 
adding or removing heat through the volume heating 
term in Equation 3 proportional to the vertical flux 
of material through the transition depth. The latent 
heat per unit mass is obtained from the Clapeyron 
equation which expresses that in a phase transition 
∆H = (dp/dT)T∆V, where ∆H is the enthalpy change, or 
latent heat, and ∆V is the change in specific volume. 
The Clapeyron slope (dp/dT) is a quantity that can be 
determined experimentally for a given transition. The 
deflection in the location of a phase boundary occurs 
because the pressure, and therefore the depth, at which 
the phase change occurs depends on the temperature. 
The effect of such a deflection enters as a contribution 
to the buoyancy term in Equation 1. A downward 
deflection represents positive buoyancy because the 
lighter phase now occupies volume normally occupied 
by the denser phase. The Clapeyron slope is also a 
constant of proportionality in the boundary deflection 
∆h = −(dp/dT)∆T/ρg that arises from a deviation ∆T 
from the reference temperature. The values for the 
Clapeyron slope used here are 1 × 106 Pa/K for the 
410 km transition and −2 × 106 Pa/K for the 660 km 
transition. Note that the exothermic 410 km transition 

leads to a positive or upward deflection for a cold slab 
and hence increased negative buoyancy, while the 
endothermic 660 km transition leads to a downward 
deflection and reduced negative buoyancy. The 660 km 
transition therefore acts to inhibit buoyancy driven 
flow while the 410 km transition acts to enhance it.

Numerical Approach
The set of Equations 1–5 is solved in a discrete 

manner on a uniform rectangular mesh with 
velocities located at the mesh nodes and temperatures, 
pressures, and densities at cell centers. Piecewise 
linear finite elements are used to represent the velocity 
field, while the cell centered variables are treated as 
piecewise constant over the cells. The calculational 
procedure on each time step is first to apply a two-level 
conjugate gradient algorithm (Ramage & Wathen, 
1992) to compute the velocity and pressure fields 
simultaneously from Equations 1 and 2. This task 
involves solving 3n simultaneous equations for 2n 
velocity unknowns and n pressure unknowns, where 
n is the total number of nodes in the mesh. Key to the 
procedure is an iterative multigrid solver that employs 
an approximate inverse with a 25-point stencil. This 
large stencil for the approximate inverse enables the 
method to handle large variations in viscosity in a 
stable fashion. The outstanding rate of convergence 
in the multigrid solver is responsible for the method’s 
overall high efficiency. The piecewise linear finite 
element basis functions provide second-order spatial 
accuracy. The temperature field is updated according 
to Equation 3 with a forward-in-time finite difference 
van Leer limited advection method.

 
Results

Two calculations will now be described that 
illustrate the effects of power-law creep on the stability 
of a sinking slab. The two calculations are identical 
except for the value of the strain rate threshold above 
which power-law creep occurs. In the first case, the 
threshold ε o in the upper 400 km is 3 × 10-13 s-1 which 
is sufficiently large that no power-law creep occurs 
anywhere in the domain. In the second case, the 
threshold is 6.5 × 10-14 s-1, about a factor of five smaller. 
In this case runaway eventually takes place. These 
calculations are performed in a rectangular domain 
2,890 km high and 1,280 km wide on a mesh with 
64 × 64 cells of uniform size. The viscosity µo at zero 
strain rate and 1600 K increases in a simple linear 
fashion by a factor 50 between 400 km and 700 km 
depth to represent the stiffer rheology of the earth’s 
lower mantle compared with the upper mantle. The 
phase changes at 410 km and 660 km depth are 
both included. The endothermic phase transition 
at 660 km as well as the higher intrinsic viscosity 
below this depth both act to inhibit flow from above. 
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The calculations are initialized with a uniform 
temperature of 1600 K except for a slablike anomaly 
100 km wide extending from the top to a depth of 
400 km with a central temperature of 1000 K and 
a thermal boundary layer at the top such that the 
temperature in the topmost layer of cells is initially 
1000 K. The upper boundary temperature is fixed at 
700 K and the bottom at 1600 K.

Figure 2 shows four snapshots in time spaced 
roughly 6 × 106 years apart of the calculation with 
the larger strain rate threshold. Plots of temperature 
and effective viscosity are displayed with velocities 
superimposed. Note that the initial maximum 
velocity drops by a factor of two as the slab encounters 
increasing resistance from the higher viscosity and 
660 km phase change. The colder material tends to 
accumulate and thicken in width in the depth range 
between 400 and 700 km. When sufficient thickening 
of the zone of cold material has occurred, it begins to 
penetrate slowly into the region below 700 km.

Figure 3 shows the effects of a strain rate threshold 
ε o sufficiently low that power-law creep is occurring 
in a significant portion of the problem domain. The 
first three snapshots in time for this case resemble 
those for the previous case. The main difference are 
regions of reduced effective viscosity in the region 
below 700 km evident in the first and third snapshots 
due to the power-law rheology. A major change is 
observed, however, in the fourth snapshot with an 
increase in peak velocity and a notable reduction in 
effective viscosity below the head of the developing 
cold plume. In the fifth snapshot the peak velocity 
has increased by another 80% and there is more 
than a factor of ten reduction in the effective viscosity 
ahead of the plume. Also displayed in this snapshot is 
the viscous heating rate that shows intense heating 
surrounding the plume. In the sixth snapshot, the 
head of the cold plume is preceded by a belt of high 
temperature, the velocity has almost doubled again, 
the effective viscosities near the plume have dropped 
even further, and the heating rate adjacent to the 
plume has more than doubled. Shortly after this 
point in the calculation, runaway occurs and the 
computation crashes.

Discussion
What do these calculations have to say about 

the mantle and the Flood? First of all, power-law 
rheology dramatically enhances the potential for 
thermal runaway. Numerical calculations are not 
really necessary to reach this conclusion. Equation 
7 indicates an increase in the deformation rate leads 
to a reduction in the effective viscosity and reinforces 
the reduction in viscosity an increase in temperature 
provides. These effects work together in a potent way. 
An exciting further consequence of the power-law 

rheology is that high velocities and strain rates can 
now occur throughout the mantle. A hint of this can 
be inferred from the last two snapshots in Figure 3. 
Large and increasing velocities are not just associated 
with the sinking plume itself but are observed 
throughout the domain. The remaining horizontal 
sections of the initial cold upper boundary layer, for 
example, are also moving at much higher speeds. 

In interpreting these numerical experiments it 
is important to realize that one is attempting to 
explore numerically a physically unstable process. 
Customary numerical difficulties associated with 
strong gradients in the computed quantities are 
compounded when such a physical instability occurs. 
The strategy is to explore the region of parameter 
space nearby but not too close to where the instability 
actually lives. The calculation of Figure 3 therefore 
does not reveal the true strength of the instability 
relative to the situation of a moderately lower value 
for the threshold strain rate. It is also useful to 
point out how various quantities scale relative to one 
another. The velocities are inversely proportional 
to the reference viscosity. A tenfold reduction in the 
reference viscosity gives ten times higher velocities. 
Similarly, the threshold strain rate for runaway 
behavior is inversely proportional to the reference 
viscosity since strain rate is proportional to velocity. 
So reducing the reference viscosity by a factor of ten 
yields a threshold strain rate for runaway ten times 
larger. This neglects the diminished influence of 
thermal diffusion at the higher velocities.

How do the parameters used in these calculations 
compare with those estimated for the earth? The 
values used for g, γ, k, H, ρr, cv, Tr, and α in Equations 
1–5 are all reasonable to within ±30% for the 
simplified reference state that is employed. The 
values used for the Clapeyron slopes for the phase 
transitions are two to three times too small and so the 
effects of the phase changes are underrepresented. 
The most important parameters are the reference 
viscosity and the threshold strain rate for power-law 
creep. The reference viscosity leads to velocities prior 
to runaway that are in accord with current observed 
plate velocities of a few centimeters per year. The 
threshold strain rates used are within the power-law 
creep region for olivine as given by Kirby (Figure 1). 
A large uncertainty is the extrapolation of the creep 
behavior of olivine to the minerals of the lower mantle 
for which there is essentially no experimental data. 
The issue is not whether power-law creep occurs in 
these minerals but what the stress range is in which 
it occurs. It is likely the threshold strain rate is not 
many orders of magnitude different from olivine. 
These calculations therefore seem relevant to the 
earth as we observe it today. 

One difficulty in making a connection between 
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Figure 2. Numerical calculation of viscous slab sinking into viscous medium with temperature and strain rate 
dependent rheology. Reference viscosity is 1020 Pa  s at 1600 K and zero strain rate in the upper 400 km and increases 
linearly with depth between 400 and 700 km by a factor of 50. Strain rate threshold for power-law creep is 3 × 10-13 s-1. 
Slab initially is 100 km wide and 400 km high. Snapshots are at (a) 0.002, (b) 6.3, (c) 13.6, and (d) 20.1 × 106 year. 
Stain rates never become large enough for power-law creep to occur. 
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Time = 6.202E+06 Yr
Maximum Velocity 
 = 4.567E+00 cm/yr

(b)
Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values
- 2.25E+01
- 2.20E+01
- 2.15E+01
- 2.10E+01
- 2.05E+01
- 2.00E+01

Log Viscosity
Time = 6.202E+06 Yr
Maximum Velocity 
 = 4.567E+00 cm/yr

Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values

Temperature

- 1672 K
- 1503 K
- 1334 K
- 1165 K
- 996 K
- 827 K

Time = 1.341E+07 Yr
Maximum Velocity 
 = 5.416E+00 cm/yr

(c)

Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values
- 2.27E+01
- 2.22E+01
- 2.16E+01
- 2.11E+01
- 2.05E+01
- 2.00E+01

Log Viscosity
Time = 1.341E+07 Yr
Maximum Velocity 
 = 5.416E+00 cm/yr

Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values

Temperature

- 1720 K
- 1546 K
- 1372 K
- 1198 K
- 1024 K
- 850 K

Time = 1.892E+07 Yr
Maximum Velocity 
 = 7.518E+00 cm/yr

(d)
Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values
- 2.28E+01
- 2.22E+01
- 2.17E+01
- 2.11E+01
- 2.05E+01
- 2.00E+01

Log Viscosity
Time = 1.892E+07 Yr
Maximum Velocity 
 = 7.518E+00 cm/yr
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these calculations and the Flood is their timescale. 
Some 2 × 107 years is needed before the instability 
occurs in the second calculation. Most of this time 
is involved with the accumulation of a large blob of 
cold, dense material at the barrier created by the 
phase transition at 660 km depth. This time span 
disappears when the initial condition consists of a 
large belt of cold material already trapped above this 
phase transition in the pre-Flood mantle. A relatively 
small amount of additional negative buoyancy in 

such a belt can then trigger runaway. One means for 
providing a quick pulse of negative buoyancy is by the 
sudden conversion to spinel of olivine in a metastable 
state that resides at depths below the usual transition 
depth of about 410 km. Such metastability can 
arise because the changes in volume and structure 
associated with a phase transition do not necessarily 
occur spontaneously as transition conditions are 
reached, especially if the material is cold. Some 
means of nucleation of seed crystals of the new phase 

Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values

Temperature

- 1759 K
- 1579 K
- 1399 K
- 1219 K
- 1040 K
- 860 K

Time = 2.256E+07 Yr
Maximum Velocity 
 = 1.336E+01 cm/yr

(e)
Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values
- 2.27E+01
- 2.22E+01
- 2.16E+01
- 2.11E+01
- 2.05E+01
- 2.00E+01

Log Viscosity
Time = 2.256E+07 Yr
Maximum Velocity 
 = 1.336E+01 cm/yr

(e)

Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Contour values
- 1.60E-06
- 1.28E-06
- 9.63E-07
- 6.42E-07
- 3.21E-07
- 1.18E-12

Shear Heating Rate
w/m3

(e)
Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Temperature K
Time = 2.500E+07 Yr
Maximum Velocity 
 = 3.544E+01 cm/yr

(f)

1.72E+0.3

1.54E+03

1.37E+03

1.20E+03

1.03E+03

8.60E+02

Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Log viscosity
Time = 2.500E+07 Yr
Maximum Velocity 
 = 3.544E+01 cm/yr

(f)

22.721

22.146

21.570

20.995

20.419

19.844

Case 114 phase changes
Reference visc = 1.E20
Edotmin = 6.5E-14
26 April 1994

Shear Heating (w/m3)
Time = 2.500E+07 Yr
Maximum Velocity 
 = 3.544E+01 cm/yr

(f)

3.55E-06

2.84E-06

2.13E-06

1.42E-06

7.09E-07

0.00E+00

Figure 3. Same as Figure 2 except strain rate threshold is 6.5 × 10-14s-1. Snapshots are at (a) 0.001, (b) 6.2, (c) 13.4, 
(d) 18.9, (e) 22.6, and (f) 24.3 × 106yr. Sinking plume runs away shortly after final shapshot.



9Runaway Subduction and the Genesis Flood

is generally required. If such nucleation does not 
happen, then substantial amounts of the less dense 
phase can survive to depths much greater than 
what the assumption of a spontaneous transition 
would imply. Indeed, there is observational evidence 
for significant amounts of metastable olivine in the 
slab currently beneath Japan (Iidaka & Suetsugu, 
1992). A shockwave passing through such a volume 
of metastable material can initiate the nucleation 
and cause a sudden conversion to the denser phase. 
Present day deep focus earthquakes likely represent 
manifestations of such a process on a small scale. 
In the context of the Flood, it is conceivable that an 
extraterrestrial impact of modest size could have 
triggered a sudden conversion of metastable material 
to the denser phase and the resulting earthquakes 
then propagated in a self-sustaining manner to 
convert the metastable material throughout much of 
the upper mantle to the denser spinel phase, which in 
turn initiated the runaway avalanche of upper mantle 
rock into the lower mantle. It is also conceivable that a 
single large earthquake generated by causes internal 
to the earth could have been the event that caused 
a sudden conversion of the metastable material and 
then the runaway avalanche.

Conclusions
Rapid sinking through the mantle of portions 

of the mantle’s cold upper boundary facilitated by 
the process of thermal runaway appears to be a 
genuine possibility for the earth. A highly nonlinear 
deformation law for silicate minerals at conditions 
of high temperature known as power-law creep, 
documented by decades of experimental effort, in 
which the effective viscosity decreases strongly with 
the deformation rate, makes thermal runaway almost 
a certainty for a significant suite of conditions. This 
deformation law also makes possible strain rates 
consistent with large scale tectonic change within the 
biblical time frame for the Flood. Mineralogical phase 
changes combined with the viscosity contrast between 
upper and lower mantle conspire to provide the setting 
in which a sudden triggering of a runaway avalanche 
of material trapped in the upper mantle into the lower 
mantle can occur. Calculations by other investigators 
that include the endothermic phase transition, but not 
temperature or strain rate dependent viscosity, also 
display the tendency for episodic avalanche events 
(Machetel & Weber, 1991; Peltier & Solheim, 1992; 
Tackley, Stevenson, Glatzmaier, & Schubert, 1993; 
Weinstein, 1993). Such an episode of catastrophic 
runaway is here presented as the mechanism 
responsible for Noah’s Flood.
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